Effectiveness of Reading and Math Software Products

Findings From the National Evaluation

Mark Dynarski

$$
\text { March } 2009
$$

Study Synopsis

- Design
- Nine reading and six math software products (four grade levels)
- 132 volunteer schools
- Random assignment of volunteer teachers within schools to use products or not: each school is an experiment
- Implementation
- Companies train teachers, provide support
- Study purchased upgrades and some hardware components
, Key Findings
- Jest scores not statistically different
- Most individual products not effective
- Few relationships between effects and contextual factiors
- Experience has mixed effectis on effectiveness

Study Size

Districts Schools Teachers Students
Grade 1
Grade 4
Grade 6

11
10
46
169
2,619
2,265
3,136
Algebra
10
23
118

1,404
Total
45
140
439
9,424
Unduplicated
33
132
439
9,424

Implementation Framework

Did teachers learn to use products, use them, and did using them change what teachers did in classrooms?

- Teacher training [0, R]
- Amount of use [l, R]
, Technical difficulties and teacher support [I]
- Student and teacher roles [0]

Student on-task behavior [0]
, Use of performance reports [J]

Implementation Findings

- Nearly all trained, believed it prepared them
- Minor difficulties using hardware
- Total use of software products was higher in treatment classrooms
, Other
- Teachers more likely to be "facilitators"
- Students more likely to work on their own
- More on-task behavior

Difference in Technology Use in Treatment and Control Classrooms: First Grade

Effects on Classroom Practices

Note: * Significantly different from zero at the 0.05 level

Effects on Classrooms

Percent Difference: Students On Task

Estimating Effects

Outcome: spring test score

- Main effects
- 3-level model of students, classrooms, schools
- Fall test score as covariate (other covariates)
- Power: able to detect effect size of 0.15
, Increase of about 6 percentile points at the mean

Estimation Model: Main Effects

Student : $Y_{i j k}=\alpha_{0, j k}+\pi X_{i j k}+\varepsilon_{i j k}$
Classroom: $\quad \alpha_{o j k}=\beta_{0 k}+\beta_{1} T_{j}+\varphi W_{j}+\mu_{j k}$

$$
\text { School: } \quad \boldsymbol{\beta}_{0 k}=\mathcal{S}_{0}+\mathcal{S}_{1} Z_{k}+v_{k}
$$

$Y_{i j k}=\delta_{0}+\beta_{1} T_{j}^{\prime}+\delta_{1} Z_{k}+\pi X_{i j, k}+\varphi W_{j}+\xi_{i j, k}$

Test Scores: First Grade

SAT-9 Reading Score

Note: None are significantly different from zero at the 0.05 level

Effect Sizes By School: First Grade

Test Scores: Fourth Grade

SAT-10 Reading Score

Note: None of the effect sizes is significantly different from zero at the 0.05 level

Test Scores: Sixth Grade

SAT-10 Math Score

Note: None of the effect sizes is significantly different from zero at the 0.05 level

Test Scores: Algebra

ETS Algebra Exam

Overall Score Concepts
Processes Skills
Effect

Note: None of the effect sizes is significantly different from zero at the 0.05 level

Estimation Model: Interaction Effects

$$
\begin{aligned}
& \text { Student: } Y_{i j k}=\alpha_{0 j k}+\pi X_{i j k}+\varepsilon_{i j k} \\
& \alpha_{o j k}=\beta_{0 k}+\beta_{1 k} T_{j k}+\beta_{2 k} T_{j k} W_{j k}+\varphi_{k} W_{j k}+\mu_{j k} \\
& \beta_{0 k}=\gamma_{0}+\gamma_{1} Z_{k}+\tau_{k} \quad \beta_{1 k}=\omega_{0}+\omega_{1} Z_{k}+v_{k}
\end{aligned}
$$

X: student characteristics T: treatment W: teacher characteristics Z: school characteristics

Interactions

- First grade
- More experienced teachers (+)
- Smaller student-teacher ratio (+)
- Fourth grade
- Product Usage (+)
, Sixth Grade
, None
- Algebra

Difficulties using produet $(-)$

Design of Second Year of the Study

- Products that had been implemented in a few schools during year 1 were not included in year 2
- One treatment teacher and one control teacher randomly sampled within schools that had more than one in either group
\lrcorner Districts that administered nationally-normed tests provided those scores as outcome data
- No classroom observations or teacher interviews

Effects of one year of teacher experience: reading products

--First Grade--

Effect on
Student
Test Scores
(Normal
Curve
Equivalent
Scores)

Neither difference is statistically significant at the 5 percent level.

Effects of one year of teacher experience: math products

Effect on

Student Test
Scores

Variation in Logged Student Product Usage

- First grade
- First year 2,556 minutes, second year 1,182 minutes

- Fourth grade
- First year 720 minutes, second year 936 minutes

- Sixth grade
- First year 852 minutes, second year 678 minutes

- Algebral
- First year 1,308 minutes, second year 986 minutes

Reading Product Effects

Math Product Effects

Study Tradeoffs

- Included 15 reading and math products

- Many products and types of technology not in the study
- Results do not mean "technology is ineffective"
, Used experimental design
- Teachers had not used these products in current classrooms

Concluding Thoughts

- Products may be cost-effective
- Comparative effectiveness not known
- School districts and decisionmakers express appreciation for the information

